Loading

SnakeCLEF2021 - Snake Species Identification Challenge

Download dataset in Colab/Notebook via CLI

This notebook contain example on how to download dataset via notebook/colab using aicrowd-cli

shivam

Download dataset example for SnakesCLEF πŸ› ΒΆ

In [ ]:
!pip install -U aicrowd-cli==0.1 > /dev/null
In [ ]:
# Get your API key from https://www.aicrowd.com/participants/me
API_KEY = "add-your-api-key-here"
!aicrowd login --api-key $API_KEY
API Key valid
Saved API Key successfully!
In [ ]:
!aicrowd dataset list --challenge snakeclef2021-snake-species-identification-challenge
                           Datasets for challenge #3                            
β”Œβ”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ #  β”‚ Title                        β”‚ Description                  β”‚      Size β”‚
β”œβ”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ 0  β”‚ Species to Country Map File  β”‚ Species to Country Map File  β”‚   1.56 MB β”‚
β”‚ 1  β”‚ BaseLine Notebook - Training β”‚ BaseLine - Training Script   β”‚  30.02 KB β”‚
β”‚    β”‚ Script                       β”‚ with EfficientNet B0 and     β”‚           β”‚
β”‚    β”‚                              β”‚ PyTorch                      β”‚           β”‚
β”‚ 2  β”‚ SnakeCLEF2021 - MinTrain     β”‚ CSV file with metadata. Max  β”‚  13.74 MB β”‚
β”‚    β”‚ Metadata                     β”‚ 300 images per class.        β”‚           β”‚
β”‚ 3  β”‚ SnakeCLEF-2021 -             β”‚ SnakeCLEF-2021-TrainingData  β”‚     60 GB β”‚
β”‚    β”‚ TrainingData                 β”‚                              β”‚           β”‚
β”‚ 4  β”‚ SnakeCLEF2021 - TrainVal     β”‚ CSV file with Metadata.      β”‚  76.80 MB β”‚
β”‚    β”‚ Metadata                     β”‚                              β”‚           β”‚
β”‚ 5  β”‚ archived_train.tar.gz        β”‚ Training Set of 82601 images β”‚     21 GB β”‚
β”‚    β”‚                              β”‚ of snakes spread across 45   β”‚           β”‚
β”‚    β”‚                              β”‚ species.                     β”‚           β”‚
β”‚ 6  β”‚ round_1_and_2_train.tar.gz   β”‚ (Permanent Link on           β”‚      42GB β”‚
β”‚    β”‚                              β”‚ datasets.aicrowd.com)        β”‚           β”‚
β”‚ 7  β”‚ test_ground_truth.csv        β”‚ Round 4 - Ground Truth       β”‚  44.83 MB β”‚
β”‚ 8  β”‚ test_images.tar.gz           β”‚ Round 4 - Testing dataset    β”‚    4.8 GB β”‚
β”‚    β”‚                              β”‚ images                       β”‚           β”‚
β”‚ 9  β”‚ test_metadata.tar.gz         β”‚ Round 4 - Metadata for       β”‚ 232.22 KB β”‚
β”‚    β”‚                              β”‚ testing dataset              β”‚           β”‚
β”‚ 10 β”‚ train_labels.tar.gz          β”‚ Round 4 - Metadata for       β”‚     11 MB β”‚
β”‚    β”‚                              β”‚ training dataset             β”‚           β”‚
β”‚ 11 β”‚ train_images.tar.gz          β”‚ Round 4 - Training dataset   β”‚     41 GB β”‚
β”‚    β”‚                              β”‚ images                       β”‚           β”‚
β”‚ 12 β”‚ validate_labels_small.tar.gz β”‚ Round 4 - Metadata for       β”‚     10 KB β”‚
β”‚    β”‚                              β”‚ validation dataset (Small)   β”‚           β”‚
β”‚ 13 β”‚ validate_images_small.tar.gz β”‚ Round 4 - Validation dataset β”‚   17.8 MB β”‚
β”‚    β”‚                              β”‚ images (Small)               β”‚           β”‚
β”‚ 14 β”‚ validate_labels.tar.gz       β”‚ Round 4 - Metadata for       β”‚    680 KB β”‚
β”‚    β”‚                              β”‚ validation dataset           β”‚           β”‚
β”‚ 15 β”‚ validate_images.tar.gz       β”‚ Round 4 - Validation dataset β”‚    2.4 GB β”‚
β”‚    β”‚                              β”‚ images                       β”‚           β”‚
β”‚ 16 β”‚ train_labels.tar.gz          β”‚ Round 3 - Metadata for       β”‚    1.7 MB β”‚
β”‚    β”‚                              β”‚ training images              β”‚           β”‚
β”‚ 17 β”‚ train_images.tar.gz          β”‚ Round 3 - Images for         β”‚   24.3 GB β”‚
β”‚    β”‚                              β”‚ training the models          β”‚           β”‚
β”‚ 18 β”‚ test_metadata_small.tar.gz   β”‚ Round 3 - Metadata for test  β”‚    2.6 KB β”‚
β”‚    β”‚                              β”‚ images                       β”‚           β”‚
β”‚ 19 β”‚ test_images_small.tar.gz     β”‚ Round 3 - Test Images for    β”‚   56.1 MB β”‚
β”‚    β”‚                              β”‚ local debugging              β”‚           β”‚
β”‚ 20 β”‚ archived_round1_test.tar.gz  β”‚ Test Set for Round-1         β”‚    4.3 GB β”‚
β”‚    β”‚                              β”‚ Containing 17732 images of   β”‚           β”‚
β”‚    β”‚                              β”‚ snakes (from 45 species)     β”‚           β”‚
β”‚ 21 β”‚ archived_sample_submission.… β”‚ Sample submission file       β”‚       17M β”‚
β”‚    β”‚                              β”‚ (random predictions)         β”‚           β”‚
β”‚ 22 β”‚ archived_class_idx_mapping.… β”‚ mapping of class ids and     β”‚   1.10 KB β”‚
β”‚    β”‚                              β”‚ class names                  β”‚           β”‚
β””β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
In [ ]:
# Download file at index=0 (or multiple indexes)
!aicrowd dataset download --challenge snakeclef2021-snake-species-identification-challenge 0
!aicrowd dataset download --challenge snakeclef2021-snake-species-identification-challenge 0 1
f508cf10-ac79-4750-bf36-5f0c447bef87_species_to_country_mapping.csv: 100% 1.56M/1.56M [00:01<00:00, 996kB/s]
f508cf10-ac79-4750-bf36-5f0c447bef87_species_to_country_mapping.csv: 100% 1.56M/1.56M [00:01<00:00, 989kB/s]
db0556f5-422c-4b87-9afe-e79bc1268026_BaseLine-EfficientNet-B0-224.ipynb: 100% 30.0k/30.0k [00:00<00:00, 115kB/s]
In [ ]:
# Download file by file name (can specify multiple at same time too)
!aicrowd dataset download --challenge snakeclef2021-snake-species-identification-challenge "Species to Country Map File"
!aicrowd dataset download --challenge snakeclef2021-snake-species-identification-challenge "Species to Country Map File" "BaseLine Notebook - Training Script"
f508cf10-ac79-4750-bf36-5f0c447bef87_species_to_country_mapping.csv: 100% 1.56M/1.56M [00:01<00:00, 942kB/s]
f508cf10-ac79-4750-bf36-5f0c447bef87_species_to_country_mapping.csv: 100% 1.56M/1.56M [00:01<00:00, 1.00MB/s]
db0556f5-422c-4b87-9afe-e79bc1268026_BaseLine-EfficientNet-B0-224.ipynb: 100% 30.0k/30.0k [00:00<00:00, 115kB/s]

Comments

poojamalagund
Almost 4 years ago

@shivam How can I save the downloaded dataset in Google Drive? Next time when I run the notebook, I don’t want to download the dataset again, I just want to mount google drive and run the model on the dataset. I am working on Global Wheat Challenge Dataset.

You must login before you can post a comment.

Execute